当前位置: 中工网理论频道思想者-正文
数学与文学的共鸣
丘成桐
//m.auribault.com 2016-01-14 来源:光明日报
分享到: 更多

  数理与人文的共通

  我遇见过很多大科学家,尤其是有原创性的科学家,对文艺都有涉猎。他们的文笔流畅,甚至可以媲美文学家的作品。其实,除了文艺能够陶冶性情以外,文艺创作与科学创作的方法实有共通的地方。出色的理文创作,必须有浓厚的感情和理想,在这一点上,中国人并不比西方人逊色。中国古代学者都有浓厚的感情,它们充分的表现在诗词歌赋上。

  诗人墨客,诗词歌赋,最能表现这种高尚的情怀。现代的杰出科学工作者,肉体上未必经得起上述诸贤的艰苦经验,但他们做研究时的毅力却可以跟上述诸贤媲美。科学家与文学家有很多能够产生共鸣的地方。事实上,除了有共同的感情,在研究的方法上,他们也有很多类似的地方。

  数学家也可以用和古代中国文学家赋比兴类似的手法,做出一流的创作。苏东坡是一代词宗。在他七岁时,见到眉山的一个老尼,姓朱,年约九十。她告诉苏轼,自己曾经去过蜀主孟昶的宫廷中。有一日,天气炎热,蜀主和他的妃子花蕊夫人深夜纳凉于摩诃池上。孟昶作了一首词。这个尼姑还能记得这首词,并把他告诉了苏轼。

  四十年后,苏轼只能够记得词中头两句。苏轼有天得暇,寻找词曲,猜测这词应该为洞仙歌令。苏轼因此循着这两句的意境猜测蜀主的想法,将词续完,成为《洞仙歌》:“冰肌玉骨,自清凉无汗。水殿风来暗香满。绣帘开,一点明月窥人,人未寝,倚枕钗横鬓乱。起来携素手,庭户无声,时见疏星渡河汉。试问夜如何,夜已三更,金波淡,玉绳低转。但屈指西风几时来,又不道流年暗中偷换”。

  苏轼续词对中国文学是一个贡献。但我们想想,不同的文人面对残缺的词句,一定会有不同的反应。假如是清代的乾嘉学者,就可能花很多时间对这件事做考据,得出一个结论:就是这词不可考!因此不会去续这首词。有一些文人,可能没有能力去猜测到这词的词牌名,另外有一些文人,可能像苏轼一样,猜到了词牌名,却没有兴趣去将它续起来。还有一些文人,虽然找到词牌名,但文艺功力太差,续出来没有趣味的词。但是,苏轼却兴致勃勃地花了时间去推敲,写了一篇传世的杰作!

  科研的创作也有类似的情形。现在来看看科学的发展,在1905年,物理学家知道两个重要的理论,就是牛顿的“引力场论”和“狭义相对论”。它们都与引力有关,同时都基本正确,却互相矛盾。爱因斯坦对这个问题有无比的兴趣,他知道这两个理论是一个更完美的引力理论的一部分,他在数学家闵科夫斯基、高斯、黎曼和希尔伯特的帮助下,完成了旷世大作,就是让我们钦佩的“广义相对论”。

  爱因斯坦的创意和能力当然远胜于苏轼补《洞仙歌》,但却有点儿相似。我来做一个不大合适的比拟,苏轼记得蜀主的两句词,一句可比拟为“牛顿力学”,另一句可比拟为狭义相对论里面的“洛伦兹变换”。爱因斯坦花了十年工夫来研究引力场,就是从这两件事情作为出发点,用他深入的物理洞察力和数学家提出的数学结构。

  物理学需要实验,数学需要证明,文学却不需要这么严格,但是离现象太远的文学,终究不是上乘的文学。一首词续得好,需要有文学修养,也需要有意境,才能够天衣无缝,但和大型歌剧或小说比较,它的创作,还是来得容易些。

  现在来看看文学和科学的领域里,大型的结构是如何被创作出来的。曹雪芹并没有把经典著作《红楼梦》全部完成,这千古憾事,如何将它续完呢?除了需要有出色的文学技巧外,还需要了解该书的内容和背景。由于这部书的内容错综复杂,在现代的观点来看,可能需要用统计和数学的方法来帮忙。

  曹雪芹写《红楼梦》,借用了自身的经历来描述当年家族的荣华富贵,也描述封建社会大家族所遇到的无可避免的腐败和堕落。他与评书人脂砚斋,一路著书,一路触目愁肠断。书中的笔墨,充满了他澎湃的感情,但却是有条有理的创造和叙述。在这本书差不多完成时,作者却因伤感而去世了,“芹为泪尽而逝”。但至今还没有任何作者能够将这部巨著完满地续成,对曹雪芹当年的想法如何处理,仍是争论不已的大问题。

  《红楼梦》的创作过程有如一个大型的数学创作,或者一个大型的科学创作。数学家和科学家,也是企图构造一个架构,来描述见到的数学真理或是大自然的现象。在这个大型结构里,有很多已知的现象或者定理。在这些表面上没有明显联系的现象里,我们要企图找到它们的关系。当然我们还需要证明这些关系的真实性,也需要知道这些关系引起的效果。

  但如何找到这些联系的方法,因作家而异。在小说的创作里,小说家的能力和经历,会表现在这些地方。一个好的科学家,都会创造自己的观点,或者自己的哲学,来观察我们研究的大结构。

  韦伊(André Weil)要用代数几何的方法来研究数论的问题,而朗兰兹(Robert Langlands)要用自守型表示理论来研究数论。他们在建立现代数论的大结构时,就用了不同的手法来联系数论中不同的重要部分,得到数论中很多重要的结论,令人惊讶的是:他们得到的结论往往一样,殊途同归。

  当年我和一群朋友建立“几何分析”这门学问时就采取一个观点:大量的几何现象需要用非线性微分方程来解释,方程的解往往可以决定空间的几何性质。几何学家想研究的现象包括了子流形和不同的几何结构,我在1976年完成的“卡拉比猜想”就是要构造复流形上的几何结构,方法是解非线性微分方程。二十世纪代数几何和算术几何的发展就是一个宏伟的结构,比红楼梦的写作更瑰丽,更结实,但它是由数十名大数学家共同完成的。

  在整个数学洪流中,我们见到大数学家各展所能,发展不同的技巧,解决了很多悬而未决的问题,但是要左右整个大流方向的数学家,实在不多,我们上面提到的韦伊、朗兰兹就是很好的例子。

1 2 3 共3页

零容忍党员干部追求低级趣味

  趣味属于人的心理和精神上的选择,党员干部远离低级趣味,关键是要管住自己,不但筑好“防火墙”,还要备好……

扫码关注

中工网微信


中工网微博


中工网抖音


工人日报
客户端
×